211 research outputs found

    Stability-based multivariate mapping using SCoRS

    Get PDF
    Recently we proposed a feature selection method based on stability theory (SCoRS - Survival Count on Random Subspaces) and showed that the proposed approach was able to improve classification accuracy using different datasets. In the present work we propose: (i) an extension of SCoRS using reproducibility instead of model accuracy as the parameter optimization criterion and (ii) a procedure to estimate the rate of false positive selection associated with the set of features obtained. Our results using the proposed framework showed that, as expected, the optimal parameter was more stable across the cross-validation folds, the spatial map displaying the features selected was less noisy and there was no decrease in classification accuracy. In addition, our results suggest that the estimated false positive rate for the features selected by SCoRS is under 0.05 for both optimization approaches, nevertheless lower when optimizing reproducibility in comparison with the standard optimization approach

    A new feature selection method based on stability theory - Exploring parameters space to evaluate classification accuracy in neuroimaging data

    Get PDF
    Recently we proposed a feature selection method based on stability theory. In the present work we present an evaluation of its performance in different contexts through a grid search performed in a subset of its parameters space. The main contributions of this work are: we show that the method can improve the classification accuracy in relation to the wholebrain in different functional datasets; we evaluate the parameters influence in the results, getting some insight in reasonable ranges of values; and we show that combinations of parameters that yield the best accuracies are stable (i.e., they have low rates of false positive selections)

    Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke

    Get PDF
    Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15-30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50-74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45-60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions

    SCoRS - a method based on stability for feature selection and mapping in neuroimaging.

    Get PDF
    Feature selection (FS) methods play two important roles in the context of neuroimaging based classification: potentially increase classification accuracy by eliminating irrelevant features from the model and facilitate interpretation by identifying sets of meaningful features that best discriminate the classes. Although the development of FS techniques specifically tuned for neuroimaging data is an active area of research, up to date most of the studies have focused on finding a subset of features that maximizes accuracy. However, maximizing accuracy does not guarantee reliable interpretation as similar accuracies can be obtained from distinct sets of features. In the current paper we propose a new approach for selecting features: SCoRS (Survival Count on Random Subsamples) based on a recently proposed Stability Selection theory. SCoRS relies on the idea of choosing relevant features that are stable under data perturbation. Data are perturbed by iteratively subsampling both features (subspaces) and examples. We demonstrate the potential of the proposed method in a clinical application to classify depressed patients versus healthy individuals based on fMRI data acquired during visualization of happy faces

    Measuring abnormal brains: building normative rules in neuroimaging using one-class support vector machines

    Get PDF
    Recent literature has presented evidence that cardiovascular risk factors (CVRF) play an important role on cognitive performance in elderly individuals, both those who are asymptomatic and those who suffer from symptoms of neurodegenerative disorders. Findings from studies applying neuroimaging methods have increasingly reinforced such notion. Studies addressing the impact of CVRF on brain anatomy changes have gained increasing importance, as recent papers have reported gray matter loss predominantly in regions traditionally affected in Alzheimer’s disease (AD) and vascular dementia in the presence of a high degree of cardiovascular risk. In the present paper, we explore the association between CVRF and brain changes using pattern recognition techniques applied to structural MRI and the Framingham score (a composite measure of cardiovascular risk largely used in epidemiological studies) in a sample of healthy elderly individuals. We aim to answer the following questions: is it possible to decode (i.e., to learn information regarding cardiovascular risk from structural brain images) enabling individual predictions? Among clinical measures comprising the Framingham score, are there particular risk factors that stand as more predictable from patterns of brain changes? Our main findings are threefold: (i) we verified that structural changes in spatially distributed patterns in the brain enable statistically significant prediction of Framingham scores. This result is still significant when controlling for the presence of the APOE 4 allele (an important genetic risk factor for both AD and cardiovascular disease). (ii) When considering each risk factor singly, we found different levels of correlation between real and predicted factors; however, single factors were not significantly predictable from brain images when considering APOE4 allele presence as covariate. (iii) We found important gender differences, and the possible causes of that finding are discussed

    Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases

    Get PDF
    BACKGROUND: Machine learning techniques such as support vector machine (SVM) have been applied recently in order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identification of the brain regions that contribute most to classification accuracy. Multiple kernel learning (MKL) is a sparse machine learning method that allows the identification of the most relevant sources for the classification. By parcelating the brain into regions of interest (ROI) it is possible to use each ROI as a source to MKL (ROI-MKL). METHODS: We applied MKL to multimodal neuroimaging data in order to: 1) compare the diagnostic performance of ROI-MKL and whole-brain SVM in discriminating patients with AD from demographically matched healthy controls and 2) identify the most relevant brain regions to the classification. We used two atlases (AAL and Brodmann's) to parcelate the brain into ROIs and applied ROI-MKL to structural (T1) MRI, 18F-FDG-PET and regional cerebral blood flow SPECT (rCBF-SPECT) data acquired from the same subjects (20 patients with early AD and 18 controls). In ROI-MKL, each ROI received a weight (ROI-weight) that indicated the region's relevance to the classification. For each ROI, we also calculated whether there was a predominance of voxels indicating decreased or increased regional activity (for 18F-FDG-PET and rCBF-SPECT) or volume (for T1-MRI) in AD patients. RESULTS: Compared to whole-brain SVM, the ROI-MKL approach resulted in better accuracies (with either atlas) for classification using 18F-FDG-PET (92.5% accuracy for ROI-MKL versus 84% for whole-brain), but not when using rCBF-SPECT or T1-MRI. Although several cortical and subcortical regions contributed to discrimination, high ROI-weights and predominance of hypometabolism and atrophy were identified specially in medial parietal and temporo-limbic cortical regions. Also, the weight of discrimination due to a pattern of increased voxel-weight values in AD individuals was surprisingly high (ranging from approximately 20% to 40% depending on the imaging modality), located mainly in primary sensorimotor and visual cortices and subcortical nuclei. CONCLUSION: The MKL-ROI approach highlights the high discriminative weight of a subset of brain regions of known relevance to AD, the selection of which contributes to increased classification accuracy when applied to 18F-FDG-PET data. Moreover, the MKL-ROI approach demonstrates that brain regions typically spared in mild stages of AD also contribute substantially in the individual discrimination of AD patients from controls
    corecore